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JOIST (Joint Optimizing Informational Strike Tool)

by Alan Washburn

Abstract

JOIST is a prototype computer program that deals with the optimal tasking of both strike and
information assets in a protracted war. Phenomena modeled include damage assessment, surveillance,
and target tracking. The optimization is constrained by limits on weapon stocks, attrition, and the
capacity of platforms to undertake assigned tasks. The model carefully follows the laws of Probability,

using Bayes' Theorem to process information by revising the marksman's perception of target state.
Realistically scaled problems can be solved in minutes or hours, depending on the degree of
precision required.

Executive Summary

The technological possibilities that are emerging in the Information Age make many

things possible militarily that were not possible just a few years ago, but many of the new

information systems are expensive or in short supply. Therefore, these observational

assets need to be carefully tasked, just as firepower assets need to be carefully tasked.

Passive sensors must be told where and when to look and on what frequencies. Active

sensors must be similarly guided, and must be employed especially carefully because of

the risk of giving up more information than is gained. Furthermore, although this has not

always been the case historically, strike and information assets should be tasked jointly.

Information has no value in itself, but only as a guide to subsequent action. Using a

shoot-look-shoot strategy with an expensive munition such as a cruise missile does not

make sense if the "look" capability is ineffective or urgently employed elsewhere. JOIST

attempts to task both kinds of asset jointly; in fact, the "Joint" part of JOIST's name

refers as much to jointness between strike and information asset tasking, as it does to

inter-service j ointness.



JOIST is a tasking method dedicated to the idea that strike and information assets

should be tasked optimally as well as jointly. The word "optimal" is used here in its

mathematical sense; that is, an objective function whose meaning is "expected net value

gained" is maximized over a specified time period, subject to constraints on the

availability of assets such as aircraft sorties, aircraft losses, weapons and sensors. The

reader should not be overly impressed by this optimality, since computational necessity

forces JOIST to deal only with a simplified version of reality. The number of possible

target states and sensor reports is very small, for example. Nonetheless, optimal systems

have several important advantages, among them not being at the mercy of arbitrary rules

about when information should be sought or how it should be used. Surprisingly

complex joint optimal strategies emerge even in JOIST's simplified setting.

JOIST has been tested with realistic data, but not with real data. Realistically scaled

problems can be solved in several minutes on a 450 MIHz Wintel computer. An example

is given below.

Since JOIST is optimizing and considers both information and firepower resources, it

is potentially useful for making tradeoffs between those resources. Early indications are

that the Information Age is still one in which it pays to know how to shoot-results are

generally more sensitive to strike resources than to information resources in the

(unclassified) scenarios considered so far. JOIST might also possibly be used

operationally as part of an automatic Air Tasking Order construction package, since it

deals with optimal asset allocation in a time-extended scenario. The main impediment to

accomplishing either of these goals will be the acquisition of accurate data about sensors.
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Background

The optimal use of information is difficult to model for two fundamental reasons.

First, any policy for using information must take the mathematical form of a function,

since the essence of the problem is to determine the best action as a function of the

information. In most practical cases there are an extremely large number of functions, so

the problem of finding the best one tends to be difficult except in special circumstances.

Second, the effect of actions on the system to be controlled must also be modeled, since

the meaning of the word "optimal" must involve the effect of decision making on the

controlled system. For these reasons, models of optimal decision making with

information tend to be crude. In practice, many modelers adopt reasonable but

non-optimal decision rules to specify which action is to be taken; in other words, they

adopt a particular one of the above mentioned functions, rather than searching for the

best one.

One of the special circumstances where optimal decision policies can be found as a

practical matter is the Partially Observable Markov Decision Process (POMDP). As long

as the state of the process is not too complicated and evolves in a Markov manner over

time, optimal policies can be found without having to list all the possibilities. POMDPs

are still difficult to solve, but, with continual advances in computer power and the topical

importance that comes with the Information Age, applications have become worth

considering. One natural application area is the problem of Bomb Damage Assessment

(BDA), since the Markov process representing the state of the target has only a small

number of states (two, if one thinks of the target as being either live or dead), and also

since the weapons employed to change the state of the target can be very expensive.

Castenon (1997) describes one implementation of this idea. Yost (1998) develops a
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similar model, except that the action costs required in solving a POMDP are replaced by

constraints on resources enforced by a Linear Program (LP) in an iterative scheme. Yost

and Washburn (2000) describe this as the LP/POMDP marriage. These efforts have been

criticized for omitting the possibilities of lost track (targets sometimes move or submerge

before they can be struck) and surveillance (military sensors are used to find new targets,

as well as deal with old ones). An additional criticism is that even targets that are either

"live" or "dead" can be in multiple states as far as observation is concerned. Dead targets

sometimes appear to be still alive, for example, thereby inviting further unnecessary

strikes unless the truth is exposed by observation. JOIST is intended to be responsive to

these concerns.

Overview of the Marksman's Problem

JOIST models a situation where a collection of targets is to be destroyed or at least

reduced in effectiveness by a "marksman." Targets are of multiple types, each of which

is in either state 1, state 2, or state 3 at all times. The states are arbitrary as far as the

method is concerned, but have been given specific meanings in what will be described as

the "standard scenario." In the standard scenario state 1 is a virgin live target, state 2 is a

target that is dead but not obviously so, and state 3 is a target that is more or less clearly

dead, and a strike can in no case decrease a target's state. In addition, some targets are

"tracked," and some are not. Actions can be taken only against tracked targets, with each

action potentially having multiple effects. An action can change the state of a target, and

may also provide information ("live," "dead," or "no report") about the new state. An

action may also have the effect of causing a tracked target to become untracked, in which

case no further actions against it may be taken in the future, or the surveillance effect of

4



discovering previously untracked targets that are then added to the list of targets against

which actions may be taken in the future. In principle, a single action could have all of

these effects.

Time proceeds in discrete periods, with the marksman choosing some action (possibly

null) against each tracked target in each period. For each tracked target, at the end of

each period, any information provided by the chosen action is incorporated into the

Marksman's estimate of its state, possibly including the knowledge that the target has

become untracked. There is a final period after which no further actions can be taken

against any target, some limit on the total number of periods being a computational

necessity. In practice, we would expect JOIST to be used with a "rolling horizon" where

the last period is always a fixed distance from the time of the next action.

The object of JOIST is to provide optimal actions against every target at every

opportunity. An objective function is therefore necessary. The JOIST objective is to

maximize the expected net gain from the whole campaign. Each terminal state of each

target has a reward associated with it, and the campaign reward is the sum of the

individual rewards, one for each target that is tracked at the end. In the standard scenario

the reward is the target's value if the terminal state is either 2 or 3, otherwise 0. Each

action has a cost associated with it, and the campaign cost is the sum of the costs of all

actions taken. The campaign net gain is just the difference between the campaign reward

and the campaign cost.

JOIST is a constrained optimizer; that is, the choice of actions is limited by

constraints on the availability of resources such as aircraft, weapons and sensors. These

constraints are joint in the sense that they simultaneously influence the feasible action
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choices for the entire collection of tracked targets, possibly including targets to be

discovered in the future. These constraints are a significant computational complication,

since otherwise an independent solution could be made at each target. The basic

LP/POMDP solution method is to construct an independent POMDP solution for each

target using prices for the resources obtained from the LP, incorporate the solution as a

new column of the LP, and then solve the LP again in an iterative loop (see Yost and

Washburn (2000)). JOIST uses this method.

Although JOIST is not a simulation, it does incorporate a post-optimization

Monte Carlo simulator for purposes of conducting sanity checks on the policies

determined to be "optimal." A sample output for a target worth 30 points is given in

Table 1. The marksman is at each stage required to choose an action that is either null or

a strike or a look. The three numbers in parentheses are the state probabilities just before

the action is taken, as updated by the rules of Probability (Bayes' Theorem). The true

state is also given for reference in Table 1, so both truth and the marksman's perception

are available for the analyst. The marksman, of course, is not allowed to know the

true state.

Look actions do not transform the target state, but do report on it and have the side

effect of possibly discovering new targets. Thus, the first two actions in Table 1 (looks

by Sensor 1) are not foolish, even though the state is known for certain to be 1 initially,

but rather represent failed gambles to discover new targets. The third action (Mission

157 out of a long list of legal strikes) sends the target to state 3, but the marksman does

not know that so he employs Sensor 9. Sensor 9 eventually provides a Dead report, but

not before discovering a new target of the same type (the indented text), etc. In this
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replication two targets are killed, but the same policy could result in a different outcome

(possibly much more complicated than the one shown) in a different replication. JOIST

averages over all of these possible outcomes in the process of determining the

optimal strategy.

Target value 30
State 1, Period 1 (1.000 0.000 0.000), Sensor 1, Cost 0.10
Live Report
State 1, Period 2 (1.000 0.000 0.000), Sensor 1, Cost 0.10
Live report
State 1, Period 3 (1.000 0.000 0.000), Mission 157, Cost 0.11
State 3, Period 4 (0.135 0.015 0.850), Sensor 9, Cost 0.24

Found target 1, value 30
State 1, Period 5 (1.000 0.000 0.000), Mission 163, Cost 0.19
State 3, Period 6 (0.115 0.035 0.850), Mission 148, Cost 0.88
State 3, Period 7 (0.016 0.027 0.957), No Action
Net gain from target 1 is 28.94

Dead Report
State 3, Period 5 (0.028 0.010 0.962), Sensor 2, Cost 0.10
Dead Report
State 3, Period 6 (0.009 0.007 0.984), No Action
State 3, Period 7 (0.009 0.007 0.984), No Action
Overall Net Gain 58.2851

Table 1: Output from JOIST's post-optimization simulator. The
indented text is events related to a second target of type 1 found by
Sensor 9.

A Small Constrained Example

JOIST manipulates policies for dealing with targets. Policies are difficult to illustrate,

even in small examples, because each policy must deal with all possibilities for what the

information might be. The same policy that produced the replication shown above, for

example, is also prepared to deal with the first use of Sensor 9 producing a Live report,

rather than a Dead report, or not finding a second target of type 1, or any of the other

possibilities in a potentially large tree. In order to avoid this branching, in this section we

construct a small example involving "sensors" that do not provide information. Even
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though they provide no information about the current target, they still have an important

surveillance effect (in fact, the surveillance effect is the only reason for employing them).

Suppose there are only two target types, initially 400 of type A and none of type B,

with three periods available for attacking them. Each target is worth 100 points, and is

either live or dead at all times. A strike against an A target will kill it with probability .5,

while a strike against a B target will certainly kill it. All strikes cost 30, so a strike

against either target type is profitable. Either target may also be looked at, rather than

struck. The entire effect of a look is to expose one additional target of each type, with no

associated BDA report as to the state of the examined target. Each look costs 1. Since B

targets are as valuable as A targets and easier to kill, the marksman has a conflict as to

whether to immediately set to work striking the A targets, or to "look" in order to expose

some more lucrative B targets that can be struck at a later time. Consider three possible

policies for handling one of the 400 A targets:

Policy 1: Look at the A target in period 1, thereby exposing one additional A

target and one B target. In period 2, kill the exposed B and look at the two

A's, the newly exposed A and the original A. In period 3, kill the two B's

exposed by the two looks in period 2 and ignore the four A's. The net effect

is to kill three B's at the cost of three strikes and three looks, with an

associated net gain of 207.

" Policy 2: Look at the A target in period 1, kill the exposed B in period 2, and

take no further action. The net gain is 100-30-1=69.

"* Policy 3: Strike the A in period 1 and take no further action. The net gain is

100(.5)-30=20.
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With no further constraints on the marksman's actions, Policy 1 is superior to the

other two, and the campaign's total net gain is 400(207)=81,400. However, consider the

effect of adding a constraint that there can be no more than 300 strikes in any period.

Constraints of this form are realistic, and JOIST has been formulated specifically to deal

with them. Policy 1 is now infeasible if applied to all 400 initial targets, since it results in

800 strikes in period 3. With this constraint, the optimal overall policy from JOIST turns

out to be to employ Policy 1 on 150 targets, Policy 2 on 150 targets, and Policy 3 on the

remaining 100, for a total gain of 43,400. Note that this results in 300 strikes in both

periods 2 and 3. The dual values for these two constraints are each 20, so the effective

cost of a strike in either period is 50, rather than 30, and it is this value that is used in

solving the POMDP in the last iteration.

A more practical example would have effective BDA and much less effective

surveillance, but the policies would be much harder to describe and illustrate.

Mathematical Formulation

The central part of JOIST is a POMDP involving decisions about what kind of action

to take at each stage of a decision process extended in time. Time is counted backwards

from the last stage, at which time no further actions are possible. At the last stage, the

JOIST objective function is simply a sum over all tracked targets of the target values

appropriate to the target state. At all other stages, the price of the action taken is

subtracted; that is, the objective function at all stages has the meaning "expected net gain

over this and all succeeding stages." The action prices include the dual variables of the

resource constraints. The mechanism for accomplishing this conversion of constraints to

prices is exactly as in Yost (1998) (see also Yost and Washburn (2000)), so it will not be
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repeated here.

Let ;zbe a probability vector over all of the possible states for some tracked target, the

"state vector" of the target, and let V1(;r) be the optimal expected gain obtainable from

stage t onward. In the usual POMDP formulation, Vt(;r) is initialized for t0O and then

obtained for larger values oft through the relationship

VI+I (r) = max, Y )zri {-c(i,a) + ppI irV,(r'()(r,a,k)}, where (1)
Sj k

"* a is the action chosen, with the set of possibilities possibly depending on t

"* i andj are the target states before and after the action at stage t

"* p' is the probability that statej succeeds state i if action a is taken, summing

to 1 onj for all i and a

" r' is the probability that message k is received after the action at stage t+1

and before the action at stage t, summing to 1 on k for allj and a

* zr' (ga,k) is the state vector, obtained by conditioning on the observation k

and applying Bayes' Theorem. Conditioning on k corresponds to the

assumption that the observation k is known when the decision at time t

is made.

Equation (1) states that the total expected gain at stage t+1 is the sum of two parts:

the present cost c(ia) and the optimal expected profit starting from the new state t' at

time t. Since c(i,a) >0, selection of the best action can be viewed as making a present

sacrifice in order to obtain a better future state vector. The set of feasible actions always

includes the null action a* for which c(i,a*) = 0. This action leads to the null observation

k* for which ;rT(•,a*,k*) = ir, i.e., the null action produces neither information nor a state
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change, and therefore no change in the state vector.

Equation (1) actually permits considerable generalization. The equation would

remain true if rawere also subscripted for the initial state i; indeed, the only important

object in (1) is the joint probability prjk, so only one triply subscripted array is needed.

All arrays could also be time-dependent, although this would make hopeless the quest for

stationary policies that has motivated most theoretical work on POMDPs. These

generalizations are not made in JOIST for lack of supporting data, but one further

generalization is central to JOIST's ability to handle surveillance and tracking.

Although p, is normally assumed to be a stochastic probability matrix, as stated

above, JOIST instead interprets p, to be the expected number of tracked targets in state j

in the next stage, if action a is applied to one tracked target in state i. Thus, p,. is not

necessarily a probability, and it is only required that pŽ 0. Equation (1) is now justified

by the Conditional Expectation Theorem instead of the Theorem of Total Probability, but

remains unchanged in form. This interpretation of p,,a is actually not new, since

Bellman (1957) had already allowed for it. See also Rothblum (1984). Although this

change of interpretation is almost trivial computationally, it provides considerable

additional modeling flexibility. If p' is substochastic (sums on j to less than 1), then the

defect from 1 can be interpreted as a track-loss probability. In this way, "overt" actions

might cause a target to disappear, or at least to disappear with greater likelihood than

"covert" actions. If a particular action has a "surveillance" effect of discovering new

targets, then p, may also sum onj to more than 1.
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It is a cheap, but useful, generality to permit each target to have a "class" m, in which

case an action taken on a target in state m may, through surveillance, discover targets in

other classes, possibly including class m itself. JOIST assumes that newly discovered

targets, whatever the class, always have a state vector 7ro that corresponds to state 1. Let

s, be the average number of targets of type n discovered by action a taken on target m in

state I. Then the generalized iterative formula employed by JOIST is

Vmt+i (7r) = max,, I ;T,{-c(i,m, a) + jPam Z rAV,,,t(,'(za,k)) + Z SmV,,t(;o)}. (2)
ij k n

Introducing the surveillance array sia permits p' to refer only to the state of the target

under consideration, so p' is substochastic when summed on j.

In summary, to get from equation (1) to equation (2), add a target subscript to the

indicated arrays and functions, and add a surveillance term to account for newly

discovered targets.

JOIST Database

The JOIST database consists of five comma-delimited input files. For historical

reasons there are two files for actions, with mission.csv corresponding to "strike" actions

that can potentially modify the state of the target, and sensor.csv corresponding to "look"

actions that can only provide information. Only looks can have a surveillance effect, and

the surveillance array s•,,, depends only on a and n, specifically s,' = (surva)(dutyn).

The surveillance concept is essentially random search, with surva being a sensor property

having to do with area coverage, and duty, being a target property having to do with

target density and tendency to be exposed.

12



The entirety of the sensor.csv file in the standard scenario is shown in Table 2:

Name Number Rate Live/1 Live/2 Live/3 Delay Prep BasCst Surv
1 4 240 0.7926 0.5 0.2585 0.33 1 0.1 0.1
2 4 293.04 0.778 0.5 0.2585 0.33 1 0.1 0.1
3 20 1.5 0.7927 0.5 0.2793 0.33 1 0.1 0.1
4 6 33 0.7821 0.5 0.3194 0.33 1 0.1 0.1
8 12 180 0.7724 0.5 0.2933 0.33 1 0.1 0.1
9 8 60 0.8466 0.5 0.1669 0.33 1 0.1 0.1

11 2 21.12 0.68 0.5 0.3246 0.33 1 0.1 0.1
12 4 100 0.809 0.5 0.2119 0.33 1 0.1 0.1
15 4 105 0.8349 0.5 0.2133 0.33 1 0.1 0.1
18 96 0.16 0.5 0.5 0.5 0.33 0 0.1 0.2

Table 2: The standard sensor input file sensor.csv.

The meanings of the columns in Table 2 are as follows:

Name An arbitrary name or number for the sensor type.

Number The number of sensors available.

Rate The number of looks per day.

Live/1 The probability of a "live" report given that the target is in state 1.

Live/2 The probability of a "live" report given that the target is in state 2.

Live/3 The probability of a "live" report given that the target is in state 3.

Delay The time delay in days until the sensor report is available.

Prep The probability that a report is actually made.

BasCst The basic cost of the action is part of c(i,m,a) in equation (2).

Surv The surveillance parameter as explained above.

Columns 2 and 3 are used in computing the number of looks available in any given

stage, thus determining the right-hand side of one constraint in the linear program. The

dual variable for this constraint is the other part of the action cost c(i,m,a) in equation (2).

Note that there are actually three report possibilities: "live," "dead," and "no report

(null)." The probabilities in columns 4-6 are conditional on a report being made, and
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column 8 is the probability of a report. State 1 is the "live" state for a target, so the

possibility of error is apparent in column 4. Column 7 is not currently used; instead, each

look is assumed to require a single stage to process.

Table 3 shows the beginning of the standard mission input file. Each mission applies

only to a single target, so there are many more mission types than look types. The first

three columns give the target, aircraft, and weapon type involved in the mission

(the number of weapons is shown in the "Load" column). The next five columns give

transition probabilities from state i to state j, with j always at least as large as i because

attacking a target cannot decrease its state. Attacking a target may also provide

information about its state after the attack, as shown in the next four columns. The

number of sorties involved ("Sorts") is usually 1, but may be less than 1 for missions that

attack multiple targets. The probability of losing the aircraft per sortie is shown in the

last column, and plays a role in the attrition constraint for the aircraft type.

Missions are not directly constrained, nor do they have an associated basic cost. The

reason for this is that constraints and basic costs are imposed on weapon usage, sortie

usage, and attrition. Mission costs are then inferred depending on the use of those

scarce resources.

Tgt Acft Wpn p1l p12 p13 p22 p23 Prep Live/1 Live/2 Live/3 Load Sorts Attrit
1 1 1 0.56 0.3 0.14 0.68 0.32 1 0.8 0.5 0.2 6 1 0.062
1 1 30.7550.105 0.14 0.44 0.56 0 0 0 0 6 1 0.013
1 1 7 0.395 0.375 0.23 0.52 0.48 0 0 0 0 2 1 0.062
1 1 40 0.91 0.02 0.07 0.28 0.72 0 0 0 0 4 1 0.06
1 3 1 0.615 0.245 0.14 0.36 0.64 0 0 0 0 6 1 0.008
1 3 3 0.64 0.22 0.14 0.68 0.32 0 0 0 0 6 10.009

Table 3: The first 6 of 2891 missions in the standard mission.csv file.
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Table 4 shows the target file. Each target has an arbitrary name (a simple number in

the standard scenario), an initial quantity, and a value that constitutes the marksman's

reward if its terminal state is either 2 or 3. After every action, even the "null" action, a

target in state 1 vanishes (track is lost) with probability (1- existence), in which case all

subsequent opportunities to kill it also vanish. Since the existence parameter is set to 1

for all targets in the standard database, targets do not vanish in the standard case. The

"Duty" column is as described earlier.

Name Number Value Existence Duty
1 360 22 1 0
2 167 30 1 0
3 126 30 1 0
4 49 30 1 0
5 11 7 1 0.05

Table 4: The first 5 of 40 target types in the standard
target.csv file.

All missions (strikes) involve the use of scarce aircraft and weapons. The number of

aircraft sorties used in any period is limited by the rate at which sorties can be generated,

and the total attrition over all stages is also constrained not to be too large for each

aircraft type. Table 5 shows the aircraft file aircraft.csv.

Name Sortrate Number Maxioss Bassort Basattrit
1 1.84 96 4 0.1 10
3 0.23 16 1 0.1 10
4 0.23 12 1 0.1 10
5 1.2 24 1 0.1 10
6 0.9 36 2 0.1 10
7 0.99 102 4 0.1 10
8 1.29 114 4 0.1 10
9 1.42 111 4 0.1 10

10 0.23 72 3 0.1 10

Table 5: The file aircraft.csv in the standard case.
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The sortie generation rate for the type is the product of the Number of aircraft

available and the Sortrate per aircraft. The Maxioss column is the total number of

aircraft that can be lost over the planning horizon. The next two columns are the direct or

"basic" costs per sortie and per lost aircraft.

Finally, Table 6 shows the data in weapon.csv. Each weapon type is constrained by

the number available, and, in addition, has a basic cost per weapon for employment.

Name Number Basiccost
1 223412 0
2 223412 0
3 223412 0
4 223412 0
7 1 1
8 1 1
9 27255 0

10 27255 0
11 1 1

Table 6: The first 10 of 42 weapon
types in the weapon.csv file.
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Analysis of the Standard Scenario
-~~~~ ~~ -- --- _---- ---

'" Decopo o Tt 3 J

Files and Directories -Iteration Status
Mission fmin~csv Iteration #* Bounds Gaps

100io ________v 9 ap SolutionAircraft Iacft~csy .... - 1 53458.369 10.456Ai c at l c t ~ . ...... .. ......... #t C ols F 10.4ý56
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Target itarget.csv mLow I 54424.192
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R oot jh:\docskvbproiects\4d\ m H igh ................. ........... .. .................

Soat .... W s....r Status ............. I decomposition complete

r User Inputs

Number of Days 2 100000 100000

Number of Stages 90000 - 90000

Max Iterations [1oo I0000 - 80000
70000 - 70000

Gap Tolerance 0.001 60000 60000
... . 50000 50000

UpBbdlterlnterval 10 ... 40000 -,40000
Unit Grid Iterations F30000 30000

_____-____________ 20000 20000
10000 10000

rvo DrawGraph 0 0

rPo Basic Cost i Start Istop

r Surveillance Simulate Target fF

Figure 1: The JOIST user interface after completion of computations.

Figure 1 shows the JOIST Visual Basic GUI after the completion of 100 iterations of

a six-stage scenario. All surveillance has been turned off in this scenario (note the

unchecked box). There are 40 target types, 5019 targets, and a total target value of

67441. After 100 iterations, the optimal net gain is known to be somewhere between

53458 and 54425. The total computation time for the 100 iterations is 198 seconds on a

450 MHz Wintel computer, most of which (181 seconds) is taken up by

POMDP computations.

The graph in Figure 1 shows that 100 iterations are actually more than necessary.

The lower curve is the LP objective function, a lower bound on the total net gain. This

curve starts near zero because the LP starts with only a single policy (column), and then
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increases because successive POMDP solutions generate increasingly numerous and

effective policies, each with a corresponding column for the LP. The upper curve is an

upper bound based on a Freudenthal grid of three-dimensional probabilities as suggested

by Lovejoy (1991). The probability interval [0,1] is subdivided into mHigh equal

intervals, with the initial value of mHigh being 1 and (in Figure 1) the final value being 6.

The upper bound is not evaluated at every iteration because the evaluation is time

consuming, hence the staircase nature of the graph in Figure 1, which descends sharply

from 100,000 after about 50 iterations. The gap between lower and upper bounds is

already small after only 50 iterations, and most of the higher iterations are devoted to

marginal reductions. This is typical of column-generation schemes for solving large

linear programs. Columns are generated by solving the POMDP at a grid of state vectors,

with mLow playing the same role as mHigh. Each solution of the POMDP also generates

a local upper bound on what the LP can achieve, the word "local" being needed because

the grid does not exhaust all state vectors. The middle curve shows this local

upper bound.

The inclusion of surveillance is an important feature of JOIST, but unfortunately it

comes at a significant computational cost. Turning on surveillance in this scenario

eventually results in establishing that the net gain is somewhere between 55317 and

55913-only a small gain because most of the surv and duty numbers in the database are

either zero or small. Nonetheless, establishing these bounds requires about 700 iterations

and 1500 seconds, which is a large increase compared to the time needed when

surveillance is turned off. Future development of JOIST will address this issue.
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